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The problem of time-optimal response of a linear control system is considered. 

Convergence of the solution of this problem to the solution of the problem of 
time-optimal response for a trunkated system is studied under specified condi- 
tiOIl.5. 

1. Let the behavior of the controlled system be described by the following vector 
differential equation: 

5’ II= A& + Ban, 5 (0) = u (1.1) 

x E R”, UESZCR’ 

Here iii2 is a compact convex polygon, and the coordinate origin 0, of the spaceF 
belongs to thI: interior of the space Q , while A, and B, are constant matrices, 
n X n and n X r , respectively. The set of admissible controls consists of the 

piecewise continuous functions u (t) defined on the finite time intervals (0, frl. 
Any admissible control has a finite number of points of discontinuity belonging to the 

interval (0, $3, and is continuous from the right of these points. 

The problem of time-optimal response for the system (I. 1) (see [l, Z] ) consists of 
finding an admissible control which would take it from the fixed initial state u into 

the coordinate origin 0, of the space Rn in a shortest possible time (problem I’,). 

Let the behavior of the controlled system with h E (0, A), 11 > 0 be described 

by the following vector equation: 

i = A,,z + A,y + B,u, 2 (0) = u (1.2) 

hy’ = A+ + Azzy + B,u, y (0) = w; y E R* 

where Aij and Bi are constant matrices of the corresponding dimensions. We shall 

also consider for this system the problem of time-optimal response, which c0n.d~ of 

finding an admissible control taking it from the fixed initial state (V, W) to the Co- 
ordinate origin 0 of the space R*” in a shortest possible time (problem rh). 

The question of how regular perturbations affect the solutions of the problems Of 
linear, time-optimal response was studied in [3,4]. A problem of time-optimal re+ 
ponse with a singular perturbation was formulated in [4] and certain asymptotic Proper- 

ties of its solution were discussed. 
Below we shall investigate the convergence of the solution of the problem PL to 

the solution of r. as h -+. 0, with the matrices Aa and B, defined as follows: 

Ao=AIr- AleAza-‘Aal, Bi, = B, - A~aAs~-‘& (1.3) 

502 
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We shall use, on one hand, the approach adopted in [4] in the course of inv~tigation 
of the correctness of the formulation of the linear problem of time-optimal response. 
On the other hand, we shall utilize the mathematical apparatus developed in [6,7] 
while investigating the singularly perturbed problems of optimal control with the con- 
vex performance index. 

We assume that the following three conditions hold: 
1’. The real parts of the eigenvalues of the matrix Aas are negative. 
2’. The condition of generality of position (see [l, 2-J) holds for the equation( 1. I) 

with the matrices Aa and B. and for the polygon 51; the problem ra has an opt- 
imal control denoted here by u,,(t), 0 < t < I”,,. 

3’. rank U3sAaaBa . . . A~~m-lB~l= M. 
Condition 3” was us&d in 153. 

2. Let us prove the following two auxilliary lemmas. 

L e m m a 2 . 1. Let u (t), 0 < t < T $ y, 0 < y < T be an admissible 
control continuous at all points t E (T - y, T + y) and let the sequences{hk},“, 
hk E (0, A), lim hk = 0 (k --r 00) and {Tk},“, Tk > 0, lim Tk. = T (k 
--f oo)be given. Then if z* (t), 0 f t < T is a solution of (1.1) corresponding to 
the control u (t) and @k(t), y&t)), 0 < t < TI, is a solution of(1.2) for u (t), 

h,, then 

l&Q (T&J = z* (T), k~~tE[~,~~~n:Tk,T)l!IIk(t)--X*(t!% 

- (0 

r o f. 

yJ 
Ifi+: @iI (t) = - A;~fh exp (44 

uniformly on the segment it*, T + yl . Consequently 
=k T 

lim 
k-w-m s Qfk (Tk - t) Z3,24 (t) dt = - A;!&, 

s 
exp (A0 (T - t)) B,u (t) dz (2.4) 

0 0 
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then from the equation 

(29 5) 

we obtain 

(2.6) 

Where Im is a Unit matfiX and em is azero matrix in Rm , while a prime denote 

a transpose. The total variation of the functtons Qzak (t) is uniformly bounded on 

the segment [O, T + yl. 
From (2.6) and HeIly theorem it follows that 

Tk 
fim 
k-ma f 

(A$+ @))‘d (tpk (TR - fff’ = (A,p,u (T))’ (2.7) 
0 

Let us set 

!/* V) = - A,,-’ (Aal** (t) + Bzu (t)) = 

- A;l& (exp (A&) 2, + j exp (A, it - zf) B,u (z) & - A;jjd&+ (t) 
0 

Then from (2.4), (2.5) and (2.7) it follows that 

11% 6”~) - ?/* (T) II 5 II CQ).& (Tk) + A;:4 exp (Ad”)) v Il + 

TIC 
~l~~~{~*)~ll+l!~ @t41(T~-t)&u(tfdt+ ~d~~~~~exp(~~(~-~~) X 

0 0 

II 

Tk 

%u 0) dl + II A,-,IB,u (7’) - c 
ii 

(A~~%@ (l))‘d C@& (T, - WY iI 

i. e. (2.2) holds. In the same manner we show that the sequence {Yk (t) }I~ conver- 

g~a~~teve~w~re on the Segment (0, 2’) to y* (t). But the sequence {& (t)]p; 

0 d t -S Tk is uniformly bounded, therefore the equation 

T 

z* (T) - zk (T,) = 
s 

a%) (T - t) (A,Y* 0) -t- B1u (0) CJt - 

0 

Tk 

s 
%tTk -. t) WaYk 0) + m (41 a 

0 

implies that lim Xk (Tk) = x* (2') (k Y co), where @,, (t) is the fundamental matrix 

of the equation E’ = A,,& The second equation of (2.1) is proved in the same man- 

ner. 
Let us denote by K (T, h) th e set of attainability, with the Initial state (u, W) 
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and the admissible controls u (t), 0 < t < T with h E (0, A). we know that 
the set K (T, h) is convex and compact for any h E (0, A) and T > 0 . Let 

us denote by K (T) the set of attainability for the system (1.1) with the initial state 

n and with admissible controls u (t), 0 -< t < T. 

L e m m a 2.2. For every E > 0 there exists 6 > 0 such that when h E 

(0, 61, then 0 E K(T, + e, A). 
p I o o f. We assume the opposite. Then a number a0 > 0 and a sequence 

@k)lmt kk E (0, A), lim hk = 0, (k ---f w), can be found such that 0 & K (To + Ed, 
hk) for k=i,2,... . Then from a known theorem of convex analysis it follows 
that for every k = 1,2,. . . . there exists a vector (Pk, qk)l pk = Rn, qk E Rm, 11 (pk, 
qr) II = 1 such that the inequality 

Pk’ 2 + qk’!/ < o (2.8) 

holds for all (J, y) E K (T,, + Ed, hk) . We can assume without restricting the general- 

ity, that lim (Pk, Qk) = (PO, q0) (k + 00). Let us introduce the matrix 

To+% 
Mk=l 

‘k S -%z W W,‘E;2 (t) dt 4 

tk 

Eza(t)=exp 
( 

A, T”+keo--t , tk-T,+e,- vq 
k > 

The authors show in Lemma 2 of [7] that condition 3’ implies that lim kfk = M,, 

(k --+ 001, and the matrix MO is nondegenerate. Let a number u > 0 be chosen 

so that if 11 u II < cr, then u E 62. The numbers E,* > 0, a0 > 0 and p > 0 are 

chosen in such a manner, that the following inequ4ities hold for 
81 E (0, &I*) : 

a~(O,a,) and 

81 sup max k tEITo, T 
(I 
+eo, II G’E;, (4 Mi’A;ill II exp 640 PO + eo- 4) B. II yg II u I<+ 

(2.9) 

a sup max 
k tE[To, ToS~ol 

II B,‘& VI Mi1~;;4~o II < f 

B sup max 
k 

t~[To, T +e , 
0 0 

II W;, (4 J’ho II < $ 

From the condition 2” it follows that a number CL E (0, aI) and an admissible con- 

trol rS. (r), To < t < To + e, exist, which transport the phase point from the state0, 
to the state ape. Let the number e, E (0, el*) be fixed so that the following inequal- 
ity holds: 

a II PO IIP + Po’P* + B II 90 (Ia > 0 
TO+& 

p*=- J exP (4 (To + so - t)) Boii (t) dt 
To+G--~I 

(2.10) 

Then the equation 

i 

UOW, o<t<To 
li* (t) = I3 (f), To < t < To + Eo - El 

0 tr To+eO--l<t< TO+eo 
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will be admissible and, if (Q* (t), Sk* (tf), 0 f t < 2’” + E() is the corr~p~d~g traj- 
ectory for xl,, then according to Lemma 2.1 the following relations will hold: 

From (2.9) it follows that the control 

l.$* (f) = 
ii*(t), o,<t<t, 

8u, (t) = B&E;, (t) Mi’ 

is admissible for all, sufficiently large 
ponding trajectory for & . 

k . Let us denote by (za;*, yr*) the corres- 

By virtue of Lemma 3 of [S], the sequences {&* (t)}l” and (Lj;l@,s’E (Q)I” are 
uniformly bounded on the segment [O, To + so]. From the uniform boundedness of 
the sequence {a~+ (t)}P and the Cauchy formula for t E (k TQ -!- Eo] 

(2.11) 

it follows that the sequence {(z&* (8) - Tk* ($)}I” converges unifortiy to zero ou the 
segment [0, To + eJ. But then the first equation of (2. IL) implies that 

lfm tk*(To+eo)=op, + P 
%-+W 

It can easily be shown that 

TO+%! 
lim ’ 
k-m %- s 

Em(t) & ($* (f) - ?k* (f)) dt = 0 

0 

Then 
1’e+% 

Yr* (To - so) - Bk* (T, + eo) = $ 
k s 

& W (4, (“k* (4 - 

tk 

To+80 

.zk* (f)) + B,6Uk (f)) dt = 
s 

5,s ff) A12 &* @f - zk* @I) a + 

0 

Bq0 + A~~;~& (p* + ape) 

This, together with the second equatiou of (2. ll), implies that 
lim Y%* (To + Q= Bqo 5+4r 

But since (Q* (T, + E@), yk* (To + so)) E K f T, -t so, hk), then from (2.8) it fo- 

110~s that the inequality 
Pk’xk* (To + 80) + %‘Yh_* (To + 60) < 0 

holds, On passing to the limit, the latter inequality yields 

oIlPoll + Pip* + BliPoll~ G 0 
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which contradicts (2. lo), and this completes the proof of the lemma, 

T h e o I e m 2. 1. For every number E > 0 there exists a number S>O 
such, that for h E (0, 6) the problem rh has a solution. Also, if T(h) is the 
optimal time of passage, then the inequality 1 T (A) - T,, 1 < E holds. 

P r o o f. Let the number E > 0 be fixed, According to Lemma 2.2. a number 
6, > 0 exists such, that for 5 E (0, 6,) the point 0 E K (T, -I- E, A). But 
then, by virtue of [8] an optimal control exists for all these values of h and the in- 

equality 

WK T, f e (2.12) 

holds. 
Let us assume that a sequence (IQ}:, lim 3Lk = 0, exists such, that lim T (I+) 

= T* < To (k --t 00). Let ulc (t), 0 < t < T (I+) be the optimal con- 

trol for Ik . The admissible control 

u; V> = 
u&), o<d<T(&c) 

0 
r7 T(hk)\<t\(T*+l/2(To--*) 

transports the phase point for each k , according to (1.2), from the state (u, W) to 

the state 0. We can assume without loss of generality that the sequence {u~,.*}~~ 
converges weakly to ti in La(‘) (0, T* + 1/2 (To - T*)). Then from Lemma 4 

of [6] it follows that the corresponding trajectory zk* converges pointwise to the 
solution Z of (1. l), the latter corresponding to the control ii , and the relation Z 

(T* +1/z (To- T*)) =O,, holds, i.e. 0, E K (T* + 1/2 (To - T*)). 
The contradiction thus reached shows that a number 8 E (0, 6,) exists such that the 

inequaLity T(h) > To - E, holds for h E (0, 6) and this, together with (2.12), 

proves the second part of the theorem. 

3. Let us now denote by D (A) the set of optimal controls for the problem FL. 

We turn our attention to the problem of convergence of the optimal controls and traj- 
ectories of the problem rh . Since we shall employ the Pontriagin maximum princi- 
ple [l, 21, certain properties of the set of attainability and of the conjugated systems 
will be useful. These properties shall be proved in the lemmas that follow. 

Lemma 3. 1. Let the sequence(hk}rW, 111, E (0, A), lim kk= 0 (k + co) 
and the sequence {(ph., qk))1”9 pk E R”, qk E fi” of the unit external normals 

(Pk, Qk) to the sets K (T (&), hk) at the point 0 be both given such, that lim (p/i, 

4r) = (PO 1 qo) . Then q. = 0,. 

P r o o f. Hssume that 11 q. I]# 0. Let tk. = T (hk) - ‘j& and choose the numb- 
ers aI > 0 and p > 0 so that the following relations hold: 

Po’P* + B It 4olP > 0 (3.1) 

&‘exp 
( 

Ait To +,T - t $3,’ (A;;Ad + 8qo) E Q, tk d t < T (hk) 
h 

k=1,2,... 

p*=- j exp (Ao (TO - 0 BO~O (~1 dz 
To--e1 
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Let also 

Ii (r) = 
( 

uo (97 0 < t < To - El * 
r, To - %dt< T&q 

and (Fk, gk) be the trajectory for hk corresponding to the control ii . Then from 

Lemma 2.1 and Theorem 2.1 it follows that 

lim (.Tlk fT @& 9% (T (~~))) = V, - -$~&P*f 
k-m 

The admissible control 

has the corresponding trajectory fzk*, Yk*f at hk . Repeating a part of the proof 
of Lemma 2.2, we obtain 

;\c(‘h.* tT @,#r Yk* tT @k))) = (fl, @%,, 

But since {Sk* (T @kfh Yk+ (T @k))) E K (T &k), Air), then the definition of the vectors 
f&, q& k = 1, 2,. . . impLie that 

Pk’“k* (T @k)) + ‘?k’i!k* tT @k)) < 0 

A passage to the limit now yields the inequality 

Po’P* + B II PO II” f 0 

which contradicts the inequality (3. l), and this completes the proof of the lemma, 

Lemma 3. 2. In the assumptions of Lemma 3.1 the vector p. represents 
the outward normal to the set K (?‘,) at the point 0,. 

P r o o f. Assume the opposite. Then we can find a point ZJ*EK(T~) anda 
corresponding control U* (t), 0 < t < T, such, that the following inequality holds: 

Po8v* > 0 (3.21 

Let e, be any posititive number and let define the admissible control zz as follows: 

72 (t) = u* (t), O<ttTT, 

u* (To), To < t < To + 81 

If (.Q, &) is the correspondinlj, trajectory for ?+ , then by virtue of Lemma 2.1 

Iten_ @=& tT f’,)t $, tT t~*)~) = ( u*, --A.;; ( ./Izlv* i_ B,ic* (To))) 

On the other hand, t7k (T (hk)), ak CT W)) fz K (T (hk), Ah.) and consequently pk’ fk 

(T (Lb)) + qk’ak (T (AR)) < 0 l 
Passing now to the limit and applying Lemma 3.1 we 

arrive at a contradiction, and this completes the proof of the lemma. 
Let p. be an an outward normal to the set K (To) at the point 0, e and let 

the function 9 be a solution of the equation 

cp’ = ---A,‘% cp CT,) = PO (3.3) 

Then for every t E [O, r,] the optimal control u,, (see [I.21 ) satisfies the maxi- 

mum condition 
cp’ (t) Bouo tt> = ~2: cp’ tt> Bou (3*4) 
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Similarly, if (p, q), p E R”, q E R’” is an outward unit normal to the set K (2’ 

(A), V, h E (0, A) at the point 0 and the function (cp, 9) is a solution of the 
system 

cp’ = --A& - G9, cp (T (V) = P (3.5) 

I”$’ = --A,,‘cp - A*2’$ 9 (T (A)) = g / 1 

then any optimal control u E D (h) will satisfy, for every t E [0, T, (A)) the 
maximum condition 

((o’ (0 B, + 9’ (Q B,) u (Q = ‘t;; (cp’ (Q B, + 9’ (Q &) u (3.6) 

Proof of the lemma given below follows from Lemma 1 (ii) of [7]. 

Lemma 3. 3. Let the sequences {hk}loo and {(Pk, B))lm which satisfy 
the assumptions of Lemma 3.1 be given, let (cpk, &), k = 1,2, . . . be the 
solution of the equation (3.5) with the final term (pk., qk / &) and cp be the solut- 
ion of (3.3) with the final term p. . Then for any T* E (0, To) we have 

Km max (11 c~k (t) - cp@) II + II I%(t) + AG&V (1) II) = 0 (3.7) 
R-+oa fE[O, T*] 

Theorem 3. 1. For every number E > 0 there exists a number 6 > 0 
such, that if h E (0, 6) and u E D (A), then a finite number of open intervals 

Ai, mes (U iAi) < E can be found for which u (t) = u. (t) when tE [O, 

f’J \ IJiAi* 

P r o o f. Assume the opposite. Then a number &o > 0, a sequence {hk)lm, 

hk E (0, A), lim hk = 0 (k + oo) and a control uk E D (hk) can be found for 

which the statement of the theorem will be false. Let (ph., qk) be a unit outward nor- 
mal to the set K ( TB, I+) at the point 0 where T (&) = Tk. We can assume 

without loss of generality that the sequence {(pkr Q~)}~- converges to (po, qo) and, 
in accordance with Lemma 3.1, II q. II = 0 while Lemma 3.2. implies that the vec- 

tor p. is an outward normal to the set K (To) at the point 0,. Let ((Pkr $k) 

be a solution of (3.5) with the final term bk, qt / hk) and cp a solution of (3.3) with 
the final term po. 

Let O\<T,<Tz<... < 'G~_~ < To denote all instants of time at which the 

control u,(i) cannot be uniquely determined from the maximum condition (3.4). 

The set {TV, i = 1, . . ., (1 - 1); To} can be overlapped by the open, noninter- 

secting intervals Ai, i = 1, . . . , 1 such that mes (U iAi) < e, / 2. Since by 
virtue of Theorem 2.1 lim Tk = To (k --t m) , we can assume that Tk QZ IO, To1 
\ UiAi+ If T* E A, and T* < Tk , then from Lemma 3.3. it follows that 

the relation (3.7) holds. 
Now, in accordance with the assumptions made above a sequence of points{tk)lW, 

tk E [O, ToI \ (J iAi, limtk = t* (k + m) can be found such, that 

uk @k) + uo (tk), uk (tk) = ii, u,, (tk) = u*, ii # u* 

But from (3.6) it follows that 

(qk’ (tk) B, + ‘bk’ (tk) &) 13 > ((Pk’ @k) & + $k’ (tk) &) u* 
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from which, passing to the limit and utilizing (3.71, we obtain 

cp’ (P) B,rz > cp’ (t*) B, u* 

i.e. ii-:u* which is a cmtradiction and hence proves the theorem. 
Let so(t), 0 < t \( T, be the optimal trajectory in the problem I”, , and 

Yo (Q = -4z -l (41 5 (t) + &? uo @)>. 
Theorem 3, 

(0, 6) and 
2. For every E > 0 there exists S > 0 such that if h cz 

u E D (h), then a finite number of open intervals At, i = 1, 
. . .) I, IJl@S (u,Ai) < E can be found for which the following relations hold: 

max II 5 (4 v - x0 @) II < E 
t E PI, min (T (A), r,)l 

(3. *> 

where the trajectory (z (t, h), y (t, a)) corresponds to the control u and the value 
of the parameter 3L. 

We prove the theorem again by assuming the opposite. Let a number e, > 0, a 

sequence (hkJ1m, ak E (0, A), lim hl, = 0 (k--f co) and controls r&k E D 
auks exist, for which at least one of the inequa~ti~ (3.8) does not hold. Let the se- 

quences (hk}irr and (zJ~}~~ possess all the properties of the analogous sequences in 
the proof of Theorem 3.1. 

If TV, i y= 1, . . ., I - 1, ‘ti < To are the points at which the optimal control 
u. (t) satisfying the maximum relation (3.4) is defined nonuniquely and 72 = To, 

then according to Theorem 3.1 there exists a sequence (Aik, i = 1, . . , J>I” 
of finite covers of the points ~8 such that lim mes (uiA,) = 0 (k -+ 00) and 

uk (t) = u. (t) for t E [O, To1 \ UiAtk. Then, as in Lemma 2.1, we can pro- 

ve that the sequence {y (t, hr.)}l(x is bounded, converges almost everywhere in the 

interval (0, To) to Yo w 9 and 
lim k_oo tEIO mggL f T )1 II x vy b) - xcl @I II = 0 (3.91 

li’ * 

If Lemma 1 of 161 is applied at each of the segments fai -i- e. / @I), zi+r - EO / 
(SZ)], ~~.,.i ,i; < a,, I (41), i = 1, . . . , I - 1 , then we find that 

max It Y @, hk) - YO (f) 11 = 0 (3.10) 
k-rm tE[O, To]\Ui(ti-Eo/(8b Ti+eo/(81) 

But the relations (3.9) and (3.10) contradict the assumption made earlier that for every 
k at least one of the inequa~ties (3.8) does not hold, and this proves the theorem. 

N o t e. When the problem of time-optimal response consists of finding au admiss- 
ible control carrying the state of the system from the point (v, w) to the coordinate 

origin 0, of the space Rn in the shortest possible time, then results analOgOUS t0 

TheOrem 2.1, 3.1 and 3.2 can be obtained with the assumption 3’ omitted. 
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