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138 yu.m:.oau O dme=opumail respoiise ot a linear control S‘ystem is considered,
Convergence of the solution of this problem to the solution of the problem of
time-optimal response for a trunkated system is studied under specified condi-
tions,

1, Let the behavior of the controlled system be described by the following vector
differential equation;
z =Ax+ B, z0)=v (L.1)
rE R, ueEQCH

Here Q is a compact convex polygon, and the coordinate origin O, of the space R”
belongs to the interior of the space € , while 4, and B, are constant matrices,
n X nrn and n X r, respectively. The set of admissible controls consists of the
piecewise continuous functions u () defined on the finite time intervals [0, £,].
Any admissible control has a finite number of points of discontinuity belonging to the
interval (0, ¢,), and is continuous from the right of these points,

The problem of time-optimal response for the system (1. 1) (see [1, 2] ) consists of
finding an admissible control which would take it from the fixed initial state v into
the coordinate origin O, of the space R™ in a shortest possible time (problem I'p).
Let the behavior of the controlled system with A & (0, A), A >> 0 be described
by the following vector equation;

g = Az + Apy +Bu, z(0)=v (-2
My = As® + Agy + B, y(0) =w; yER"

where A;; and B; are constant matrices of the corresponding dimensions, We shall
also consider for this system the problem of time-optimal response, which counsists of
finding an admissible control taking it from the fixed initial state (v, w) to the co-
ordinate origin O of the space R™*" in a shortest possible time (problem T').

The question of how regular perturbations affect the solutions of the problems of
linear, time-optimal response was studied in [3,4]. A problem of time-optimal res-
ponse with a singular perturbation was formulated in [4] and certain asymptotic proper-
ties of its solution were discussed.

Below we shall investigate the convergence of the solution of the problem I, w
the solution of T’y as A —» 0, with the matrices A, and B, defined as follows:

AO == All —— AnAgg_lAgl, Bo = Bl —_— AmAzz—lBg (1.3)
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Solution of the linear problem of time-optimal response 503

We shall use, on one hand, the approach adopted in [4] in the course of investigation
of the correctness of the formulation of the linear problem of time-optimal response,
On the other hand, we shall utilize the mathematical apparatus developed in [6, 7]
while investigating the singularly perturbed problems of optimal control with the con-
vex performance index,

We assume that the following three conditions hold;

1°. The real parts of the eigenvalues of the matrix A,y are negative,

2°, The condition of generality of position (see {1,2] ) holds for the equation(l. 1)
with the matrices Ao and B, and for the polygon Q; the problem I’ has an opt-
imal control denoted here by wuy(t), 0 <t < 7.

3°. rank [BgAngz PP Aggm_]'Bg]: n.,
Condition 3° was uséd in [5],

2, Let us prove the following two auxilliary lemmas,

Lemma 2.1, Let u(#),0<CEt T+ %9 0<y<<T bean admisible
control continuous at all points ¢ & (I — y, T + 9) and let the sequences{) };
MeE (0, A), limhy =0(k - o00) and {T})y, T >0, limTp=T(k
— oo)be given, Then if 2* (), 0 < ¢ < T is a solution of (1, 1) corresponding to
the control u (t) and (2x(t), yx(f)), O << ¢t < Ty is a solution of (1.2) for u (2),

Ay, then

lim 2y (T) = 2*(T), lim _ max flae(t)~ O] =0 (23
’I‘i‘i?{k (Ty) = — Az (Anz* (T) + Bu (T)) (2.2)
Proof, Let the basic solution of the homogeneous equation
E=Ank+ 4 M = Ay + 4aan
be denoted by
oF () = of @) @f (1)
of 1) ok @)
where @ (0) is a unit matrix, From the Cauchy formula we obtain
(2.3)

Y (T =0 (T v+ D5 (T w4
T
S (o4 —0B+ %.@;‘Z(Tk— 0 By)u (0 dt.
k

0
By virtue of Lemma 3 of [6] the matrix ®,,* (1) is uniformly bounded on the segment
[0, 7 + vy, andforevery = (0, T 4 vl

klim Of (1) = — A An exp (Af)
uniformly on Tt}xe segment (¢*, T + v]. Consequently
T

lim ®F (T}, — 1) Bu (t) dt = — A734y j exp (Ap (T —t)) Bu ()t (2.4
e ;



504 T.R. Gichev and A, L. Donchev

If
DL (1), te= [0, T,]

Ok (1) =
o {mgz(Tk),te[Tk,TﬂJ

then from the equation
d k (- ’ ' ! ’ .
7 @t — 1)) = — A, (O (¢ — 7)) — = Ay (O (¢ — 1)) (2.5)

we obtain

lim @f @)=

k-roo

{em’ tE(O, T+’V]

2.6
I im0 (2.6)

where Im is a unit matrix and @, is a zero matrix in R™, while a prime denotes
a transpose, The total variation of the functions ®y* (1) s uniformly bounded on
the segment [0, T + ¥yl
From (2, 6) and Helly theorem it follows that
T

k
lim (4518 (1) d (@, (T — ) = (A3Bau (7)) (2.7)
0

Let us set
y* () = — Ay (Agx* (t) + Bou (1)) =

t
— A1 Ay (exp (At v + X oxp (A (t — 1)) Byu (¥) dt — AL Ay, Byu ()
o

Then from (2, 4), (2.5) and (2, 7) it follows that
N9y (T) — y* (T) | == (D, (T,) + A71 Ay exp (A4T)) v | +

Ty T
1Ok (T w]+ “ @y (T, — ) Bou (8) dt -+ XA;;A,“ exp (Ay (T — 1)) X
0 1]

T
3
B 1t -+ A5 By (1) — [ (A5kBye ()3 @y (T — 1YY |
0
i.e. (2.2) holds, In the same manner we show that the sequence {yx ()= conver-

gesalmost everywhere on the segment (0, 7) to y* (¢). But the sequence {y (H)ho;
0< ¢<< Ty is uniformly bounded, therefore the equation

T
P (T) — 2, (T = || @o(T —1) (Aay* (0) -+ B (1) 0t —
1]

Ty
S Dy (T, — t) (Any, () By (1)) dt
a

implies that lim zx (Tx) = 2* (T) (k> o0), where @, (1) is the fundamental matrix
of the equation §& = 4y,E.  The second equation of (2, 1) is proved in the same man-~

ner.
Let us denote by K (7T, A) the set of attainability, with the initial state (v, W)
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and the admissible controls u (), 0 <C ¢t (T with A& (0, A). We know that
the set K (T, A.) is convex and compact forany A & (0, A)and T >0 ., Let
us denote by K (T) the set of attainability for the system (1, 1) with the initial state
U  and with admissible controls = (¢), 0 <Ct < T.

Lemma 2,2, Forevery ¢ > (0 thereexists § > 0 such that when A &=
(0, 8), then O = K (T, + ¢, A).

Proof, We assume the opposite, Then a number 2 >0 anda sequence
{Axh™, Ax & (0, A), lim Ag == 0, (k — o), can be found such that 0 & K (T, + &,

Ay) for k=14,2,... . Then from a known theorem of convex analysis it follows
that for every & =1,2,.... there exists a vector (px, ¢x), Px = R", ¢x = R™, | (py,
gx) | =1 such that the inequality

pr’' 2+ 'y <0 (2.8)

holds for all (z, y) = K (T + &, M) . We can assume without restricting the general-
ity, that lim (px, qx) = (po, qs) (kK — o0).  Let us introduce the matrix

1 Toteo
My = ~ S Eq (1) B,B,’E;2‘(t) d
k 5
Eg (t) = exp (An f’%ﬁ) . te=To+e— Vi
The authors show in Lemma 2 of [7] that condition 3° implies that  lim M, = M,
(k — o), and the matrix M, is nondegenerate, Let a number o >0 be chosen
sothatif |ull<o, then ue Q. The numbers &* >0,0,>0 and B >0 are

chosen in such a manner, that the following inequalities hold for « = (0, ;) and
g e (0,8%) :
g sup max I Bz'E @® M_IA ol I exp (Ao (T - &,— 1)) By | max flu "<-——
k t€[To, Tote0) (2.9

asup max [ ByE,, (f) "lA-lAmpou<_
k  t<[To, Toteo)

su max B, 1y Ml s
b K te[ Ty, Tot20) 1By Egy (1) Mi'q0 | < 5

From the condition 2° it follows that a number « < (0, ;) and an admissible con-
trol a (1), Ty < t<< Ty -+ g, exist, which transport the phase point from the state0,
to the state apy. Let the number e, = (0, ¢,*) be fixed so that the following inequal-
ity hO].dS:

alpolf + po'p* + Bl P >0 (2.10)
Toteo
=— | expa@ota—nBapa
Tot-go—8s

Then the equation

B@), To<t<Ty-Fe—g

u (), 0Kt < Ty
u* (1) =
Op, Toteg—e; <t Tyt-g
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will be admissible and, if (7x* (8), 7™ (1), 0 << ¢ << T, + &, is the corresponding traj-
ectory for 1,, then according to Lemma 2,1 the following relations will hold;

klim 2% (T + &) = ap, 4 p* (2.11)
}:ijil” gk* (TO _f" 8’(\) - A;zl Az]_ (Q.po -—{-— p*)

From (2, 9) it follows that the control
. B (1), 0<t<t,
t —— ’
) { By (8) = Byl () M3 (B + A5k Ap (7% 0po), 8, < Tort 2o

is admissible for all, sufficiently large 4. Letusdenote by (zx*, y;*) the corres-
ponding trajectory for Ax.

By virtue of Lemma 3 of [6], the sequences {@y*(H),™ and {A'®L* (H1™ are
uniformly bounded on the segment [0, T, - &). From the uniform boundedness of
the sequence {duy (h}2* and the Cauchy formula for ¢ € (&, To -+ &l

£

2% () — I, () = (Q)" {t —7) By + 1 ®F (8 —1) By) 8uy (1) dr
k k - 1T ITT m(”” ) !) Ig(

tk K
it follows that the sequence {(z;* (2) - T3* (1)}, converges uniformly to zero on the
segment [0, T, -+ &). But then the first equation of (2, 11) implies that

' klim 2. ¥ (T + &) = apy + p*
It can easily be shown that
T o420

lim L S En(t) Ay (3% () — 2% (9) dt = 0
k-ox kk
1]
Then
1 TotEe
Y Tome) — i Tot o= 7= | Fa(® (dn@d®
K
te

To}eo
TR 0) + Bab dt = { Bu) du( 0 -2 @) it +
0
Bgo -+ A5i gy (p* -+ apy)
This, together with the second equation of (2.11), implies that
Lim y, % (T -+ &) = Bgo
X0
But since (zi* (To + £¢), ¥s* (To 1 &) € K (T + €0, M), then from (2,8)it fo-
llows that the inequality
pr'ar* (To + eo) + qi'yi* (To + &) <O
holds, On passing to the limit, the latter inequality yields
ofpoll®+ po'p* + Bllgl2 s 0
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which contradicts (2, 10), and this completes the proof of the lemma,

Theorem 2. 1. Forevery number & > ( there exists a number & > 0
such, that for A & (0, §) the problem T'j has a solution, Also, if T'(A) is the
optimal time of passage, then the inequality | 77(A) — Ty | << & holds,

Proof., Letthe number & > 0 be fixed. According to Lemma 2,2, a number
8, > 0 exists such, that for A & (0, 8,) the point O =K (T, -+ €, A). But
then, by virtue of [8] an optimal control exists for all these values of A and the in-
equality

TR Ty + ¢ (2.12)

holds,

Let us assume that a sequence {A;)7, lim Ay = 0, exists such, that lim 7' (Ax)
=T* < Tolk— o) Let u (), 0t < T (M) be the optimal con-
trol for A; . The admissible control

« uk(t), 0<t<T(;"k)
W= 0, To<EST*+1a(T—T%

transports the phase point for each % , according to (1.2), from the state (v, w) to
the state (. We canassume without loss of generality that the sequence {uy*},*
converges weakly to @ in Ly (0, T* 4 /4 (Ty — T*)). Then from Lemma 4
of [6] it follows that the corresponding trajectory z;* converges pointwise to the
solution T of (1,1), the latter corresponding to the control i, and the relation Z
(T* + 1y (Te— T*)) =0,, holds, i.e. O, & K (T* + Y, (Ty — T%)).

The contradiction thus reached shows that a number & < (0, §,) exists such that the
inequality T'(A) > Ty — &, holds for A & (0, 8) and this, together with (2, 12),
proves the second part of the theorem.

3, Letus now denote by D (A) the set of optimal controls for the problem TI'.
We turn our attention to the problem of convergence of the optimal controls and traj-
ectories of the problem I . Since we shall employ the Pontriagin maximum princi-
ple [1, 2], certain properties of the set of attainability and of the conjugated systems
will be useful, These properties shall be proved in the lemmas that follow,

Lemma 3. 1, Letthesequence{h};*, & & (0, A),lim A,= 0 (k — o)
and the sequence  {(py, gx) 1™, pr = B", ¢x & B™ of the unit external normals
(Pr, qr) tothesets K (T (Ay), Ax) at the point O be both given such, that lim (p;,
gx) = (Po, ). Then gy = O,y,.

Proof. asume that |g| 0. Let # = T (M) — VA; and choose the numb-
ers & >0 and B >0 so that the following relations hold:

PoIP* + ﬁ”%“z >0 3.1
’ M T _— t — -

By exp (A22 _°+Thl"“> M (A3} Anp* 4 Br) = Q, £, <t<T (b

k=12,

pk=— exp (Ao (To — 7)) Boyo (1) dt

To—8
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Let also

d(t):: “o(f),0<t<T0“‘81
O, To—ert{To+48y

and (T, §x) be the trajectory for A, corresponding to the control §. Then from
Lemma 2,1 and Theorem 2, 1 it follows that
klilﬁ (F (T (M), 7 (T () = (%, — A Anp®)
The admissible control
a(t), 0t <,

To-t 63— 1,

) =9, ‘ - -
Byexp| 4y, "—Tk——) Mt (Bgo+ Agr Ay p¥), LSESKT (M)

has the corresponding trajectory (zx*, yx*) at Ay . Repeating a part of the proof
of Lemma 2,2, we obtain

;i_,n;(z;,-* (T ), 9% (T (\)) = (P, B0)
But since (z,* (T (M), vi* (T (M) = K (T (M), Mx), then the definition of the vectors
{Pr, ax), k=1, 2,. .. implies that
pi'ze* (T (M) + a'yic* (T (M) <O
A passage to the limit now yields the inequality
p'p* + Bllaf <O
which contradicts the inequality (3. 1), and this completes the proof of the lemma,

Lemma 3, 2, Inthe assumptions of Lemma 3, 1 the vector p, represents
the outward normal to the set K (T'y) at the point O,,.

Proof., Assmme the opposite, Then we can find a point »* = K (T'y) anda
corresponding control u* (), 0 << ¢ < Ty such, that the following inequality holds:
po'v* >0 (3.2)
Let e, be any posititive number and lef define the admissible control @ as follows;
ﬁ(t)x{u*(t)’ O‘<t<T0
u¥ (To), Tt T+ &y

If (7, §x is the corresponding trajectory for A, , then by virtue of Lemma 2. 1
lim (@ (7 (), G5 (7 () = (0%, —AZ] (Ae* |- Byck (To)

On the other hand, (Tx (T (M), Ji (T (M) & K (T (Ay), Ay) and consequently p,’ ¥
(T ) -+ g’k (T (M) < 0. Passing now to the limit and applying Lemma 3,1 we
arrive at a contradiction, and this completes the proof of the lemma,
Let p, be an an outward normal to the set K (T') at the point O, , and let
the function ¢ be a solution of the equation
¢ = —A)e, ¢ (To) = Po (3.3)
Then for every ¢t < [0, T,] the optimal control u, (see [1.2]) satisfies the maxi-

mum condition q>' () Bou, ( f) = max (p' (t) Byu 54
uesEQ ( -4)
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Similarly, if (p, q), p & R", ¢ & R™ is an outward unit normal to the set K (T
(A), M), A= (0, A) atthe point O and the function (9, V) is a solution of the
system

¢ = —Ay'e — Ay, (T (M) =p (3.5)
M = —Ap'o — Ap, Y(T(H) =gq/ A

then any optimal control u & D (A) will satisfy, for every t & [0, T, (A)) the
maximum condition

(¢" () By + ' (1) Bu(t) = max (¢' (1) By 9" () B)u (39
Proof of the lemma given below follows from Lemma 1 (ii) of [7].

Lemma 3,3, Letthe sequences {A};® and {(Px, gx)}1;™ which satisfy
the assumptions of Lemma 3.1 be given, let (g, Pyx), &k =1,2,... be the
solution of the equation (3, 5) with the final term (py, gx / M) and @ be the solut-
ion of (3.3) with the final term p, . Then for any T* < (0, Ty) we have

lim max (| ge(®) —o®) | +[be) + Andue()) =0 @7
koo tez[o, T*]

Theorem 3. 1, For every number € > 0 there exists a number 6> 0
such, that if A & (0, 8) and u & D (}), then a finite number of open intervals
A;, mes (|J;A;) << & canbe found for which u (f) = u, (t) when t & [0,
T\ Uil

Proof., Assume the opposite, Then a number & > 0, asequence {j,},>,
A & (0, A), lim A, = 0 (k—> oo) and a control ux & D () can be found for
which the statement of the theorem will be false, Let (py, g;) be a unit outward nor-
mal to the set K (Ty, Ay) at the point O where T (Ay) = T,. We can assume
without loss of generality that the sequence {(py, gx)}, converges to (p,, g,) and,
in accordance with Lemma 3,1, { g [| =0 while Lemma 3,2. implies that the vec-
tor p, isan outward normal to the set K (T,) at the point O,. Let (@x, i)
be a solution of (3. 5) with the final term (py, gx / Ax) and @ a solution of (3, 3) with
the final term p,.

Let 0 <1, <<Ts<<..<<T;<<T, denote all instants of time at which the
control uy(f) cannot be uniquely determined from the maximum condition (3. 4),
The set {t;, i =1, ..., (I — 1); T,} canbe overlapped by the open, noninter-
secting intervals A;, i = 1, ..., [ such that mes ({J;A;) << g,/ 2. Sinceby
virtue of Theorem 2,1 lim Ty = T4 (k > o0) , we can assume that T & [0, Tl
N\ Ui ¥ T* < A, and T* << Ty, then from Lemma 3.3, it follows that
the relation (3. 7) holds,

Now, in accordance with the assumptions made above a sequence of points{;},*,
te = [0, Tod\ J;A;, limt, = t* (k— o) can be found such, that

up (B) 7= wo (t),  un (b)) = @, uo (b)) = u*, 4 % u*
But from (3. 6) it follows that
(0" (@) By + Wi (8) Bo) & > (@i (b) B+ i’ () By) u*
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from which, passing to the limit and utilizing (3. 7), we obtain
¢’ (t*) Bt > ¢’ (t*) By u*

i.e. u ==u* which is a contradiction and hence proves the theorem.

Let 2y(t), 0 < ¢ < T, be the optimal trajectory in the problem Iy, and
Yo (1) = —Ag™ (s 7 (8) + Bz uy ().

Theorem 3.2, Forevery ¢ >0 there exists § >> 0 such thatif A &
(0,8) and w e D (L), then a finite number of open intervals A;, § = 1,
.« I, mes ( [JiA;) < & can be found for which the following relations hold;

max [z (R -z )] <s @9
te [0, min (T (M), To)l

Emggm%waﬁw—%mu<a

where the trajectory (z (£, A), y (£, A)) corresponds to the control % and the value
of the parameter A.

We prove the theorem again by assuming the opposite. Let a number &g >0,a
sequence {M}®, M & (0, A), lim Ay = 0 (k> oo) and controls uy = D
{M—) exist, for which at least one of the inequalities (3. 8) does not hold. Let the se-
quences {A,},~ and {u;},® possess all the properties of the analogous sequences in
the proof of Theorem 3, 1.

If t;,i =1,...,1 —1, t; <<T, are the points at which the optimal control
Uy (t) satisfying the maximum relation (3. 4) is defined nonuniquely and 7; = Ty,
then according to Theorem 3.1 there exists a sequence  {A*, i =1, .., I};®
of finite covers of the points T; such that lim mes ({J;A;) = 0 (k — o0} and
up (t) = ug () for ¢ [0, TeI\ |J;A;*. Then, asinLemma 2.1, we can pro-
ve that the sequence {y (¢, Ay)};* is bounded, converges almost everywhere in the
interval (0, Tg) to Yo (t) , and

lim max Ha(t, M) — 2o () || = O 3.9
koo t&[0, mIn(T (M), To)]

If Lemma 1 of [6] is applied at each of the segments [t; + &o / (8), Tisy — &0/
D], T — < & /4Dy, i =1, ..., 1 —1, then we find that
lim max Iyt M) — v ()| = O (8.10)
koo t={0, To]\Ui(Ti—Bq/(Bl), ti+eo/(sl)

But the relations (3. 9) and (3, 10) contradict the assumption made earlier that for every
k at least one of the inequalities (3.8) does not hold, and this proves the theorem,

N ote, When the problem of time-cptimal response consists of finding an admiss-
ible control carrying the state of the system from the point (v, w) to the coordinate
origin On of the space R™ in the shortest possible time, then results analogous to
Theorems 2.1, 3.1 and 3.2 can be obtained with the assumption 3° omitted.
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